A Value Equivalence Approach for Solving Interactive Dynamic Influence Diagrams
نویسندگان
چکیده
Interactive dynamic influence diagrams (I-DIDs) are recognized graphical models for sequential multiagent decision making under uncertainty. They represent the problem of how a subject agent acts in a common setting shared with other agents who may act in sophisticated ways. The difficulty in solving I-DIDs is mainly due to an exponentially growing space of candidate models ascribed to other agents over time. in order to minimize the model space, the previous I-DID techniques prune behaviorally equivalent models. In this paper, we challenge the minimal set of models and propose a value equivalence approach to further compress the model space. The new method reduces the space by additionally pruning behaviorally distinct models that result in the same expected value of the subject agent’s optimal policy. To achieve this, we propose to learn the value from available data particularly in practical applications of real-time strategy games. We demonstrate the performance of the new technique in two problem domains.
منابع مشابه
Approximate solutions of interactive dynamic influence diagrams using ε-behavioral equivalence
Interactive dynamic influence diagrams (I-DID) are graphical models for sequential decision making in uncertain settings shared by other agents. Algorithms for solving I-DIDs face the challenge of an exponentially growing space of candidate models ascribed to other agents, over time. Pruning the behaviorally equivalent models is one way toward identifying a minimal model set. We seek to further...
متن کاملǫ-Subjective Equivalence of Models for Interactive Dynamic Influence Diagrams
Interactive dynamic influence diagrams (I-DID) are graphical models for sequential decision making in uncertain settings shared by other agents. Algorithms for solving I-DIDs face the challenge of an exponentially growing space of candidate models ascribed to other agents, over time. Pruning behaviorally equivalent models is one way toward minimizing the model set. We seek to further reduce the...
متن کاملApproximating Value Equivalence in Interactive Dynamic Influence Diagrams Using Behavioral Coverage
Interactive dynamic influence diagrams (I-DIDs) provide an explicit way of modeling how a subject agent solves decision making problems in the presence of other agents in a common setting. To optimize its decisions, the subject agent needs to predict the other agents’ behavior, that is generally obtained by solving their candidate models. This becomes extremely difficult since the model space m...
متن کاملSpeeding Up Solutions of Interactive Dynamic Influence Diagrams Using Action Equivalence
Interactive dynamic influence diagrams (I-DIDs) are graphical models for sequential decision making in partially observable settings shared by other agents. Algorithms for solving I-DIDs face the challenge of an exponentially growing space of candidate models ascribed to other agents, over time. Previous approach for exactly solving IDIDs groups together models having similar solutions into beh...
متن کاملSpeeding Up Exact Solutions of Interactive Dynamic Influence Diagrams Using Action Equivalence
Interactive dynamic influence diagrams (I-DIDs) are graphical models for sequential decision making in partially observable settings shared by other agents. Algorithms for solving I-DIDs face the challenge of an exponentially growing space of candidate models ascribed to other agents, over time. Previous approach for exactly solving IDIDs groups together models having similar solutions into beh...
متن کامل